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The linear effect of an external electric field on the EPR spectra of d ° ions in.cubic crystals
is described by a third-rank tensor with only one independent component. The values of this
parameter are calculated from a molecular-orbital theory for Cr*, Mn**, and Fe** in ZnS
(zinc blende). Very good agreement with experiment is obtained by a mechanism in which
charge-transfer levels and ligand orbitals play a dominant role.

I. INTRODUCTION

First-order (linear) electric field effects in EPR
spectra of transition-metal ions in crystals may in
principle be observed wherever the ion site lacks
a center of symmetry.!™" The description of these
effects requires the introduction of additional terms
in the spin Hamiltonian. An analysis of Kramers’s
invariance shows that those of the lowest order
(and the only ones observed to date) are described
by third-rank tensors:

SCE=TiJkSJHkEi+RUkSJSkEi . (1. 1)

The first term may give a contribution to the gyro-
magnetic factor, but its effect is in general negli-
gible, at least for ground-state orbital singlets.
The second term gives a contribution to the zero-
field splitting or fine structure. In fact, the sec-
ond-rank tensor obtained by contraction for a given
direction of the electric field, Dj,=R;;, E;, has the
same properties as the fine-structure tensor Dy,.
The tensor R;;, has the same symmetry properties®
as the piezoelectric tensor d;;,. We shall be in-
terested in the electric field splitting of the EPR,
spectrum of d° ions in zinc blende. In this crys-
tal, the site symmetry is tetrahedral, and the R;;,
tensor has only one independent component, and
one has Ry;= Ry5 = R3g=R, the other tensor compo-
nents being zero.® In this case, the spin Hamil-
tonian contains the terms

%p=R{E,(S,S,+5,S,)+E,(S,S,+5,5,)

+E(S,5,+8,S)}.  (1.2)

The theory is most simply (and generally) de-
rived for the H1I E Il [001] axis of the cubic crystal.
In this case R is calculated within the lowest spin
multiplet, for which S=3, and is given by the ma-
trix element

A
R=75 (3%[5sl3%). (1.3)
R values have been measured®”® for Cr*, Mn*,

4

and Fe®* as substitutional impurities in ZnS (blende).
The measured value for Fe™" is almost 20 times
that observed for the other two ions, an effect which
seems inexplicable in the customary framework of
the equivalent-even-field approach®=® in crystal-
field theory.

This is not the first time such differences in the
behavior of d° ions have been observed. Most of
the properties of Mn** impurities in host crystals,
such as the optical spectra!® and the gyromagnetic
factor (practically equal to the free-ion value), can
in fact be explained by crystal-field theory whereas
the same properties of Fe*** defy this approach. !

It is the purpose of this paper to propose a coherent
interpretation of all these results by means of mo-
lecular-orbital theory.

In the presence of an externally applied electric
field ﬁ, the physical (as opposed to the spin) Ham-
iltonian contains an additional term

Ve=eB 20,7, (1.4)

describing the interaction of the electric field with
the electrons. The purpose of the theory consists
in the derivation of the spin Hamiltonian (1. 2) from
(1. 4) and the knowledge of the electronic structure
of the paramagnetic center. The unpaired electrons
in a transition-metal ion are “pure” d electrons in
the crystal-field approach. Since the many-elec-
tron wave functions built from these electronic
wave functions have even parity, an odd-parity ef-
fect, such as the linear “Stark” effect we wish to
study, must occur via the odd components of the
ligand field, which is able to scramble odd-parity
wave functions into the ground state. In the crys-
tal-field approach, these odd-parity functions are
essentially 4p-electron functions corresponding to
excited configurations of the central ion. A per-
turbation calculation is able to lead to the concept
of the “equivalent even field” acting within the
ground-state manifold

——odd'"odd/ \Podd ' " F
Vee >< d E .

oy (1.5)
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As we shall see, if we allow ligand functions to
participate in the “complete” set of one-electron
wave functions used to describe the center, their
effect can dominate that of the 4p electrons, be-
cause frequently, the corresponding “charge-trans-
fer” configurations, in which a ligand electron
“migrates” toward the central ion, have lower en-
ergy than the 3d"'4p configuration. However, this
possibility also depends on the relative importance
of spin-orbit coupling to these charge-transfer con-
figurations.

Molecular-orbital theory does not follow precise-
ly the same path outlined here. The odd compo-
nents of the molecular field are automatically in-
cluded in the formulation of the molecular orbitals,
which correspond to the symmetry of the center and
thus have no even-odd characteristics from the
outset. The scrambling of “odd” orbitals, 4p as
well as ligands, is thus assured in the zero-order
wave function. This makes a direct comparison
between the methods somewhat difficult.

Royce and Bloembergen®* have already pointed
to the importance of covalent bonding for the elec-
tric field effect in Cr* in essentially ionic crys-
tals with oxygen as a ligand. Their calculation in-
cluded anisotropic spin-orbit interactions, but not
the important effect of ligand spin-orbit coupling, 2
especially when dealing with heavier ligands. Our
calculation shows that this coupling accounts for
an important part of the effect in ZnS, because it
is this effect which allows for a coupling to non-
bonding charge-transfer states of #, symmetry to
the ground state.

1. MOLECULAR MODEL OF d° CENTER IN ZnS
(BLENDE)

Zinc blende belongs to the cubic crystal sys-
tem. Each Zn atom is surrounded by 4 nearest-
neighbor sulphur atoms at 2.36 A=4.41 a.u. The
next nearest neighbors are 12 Zn atoms, whose
distance to the center is only V% =1. 633 times the
nearest-neighbor distance. The surroundings of
a S atom are mutatis mutandis the same.'® The
structure of ZnS is rather ionic, but the effective
charges on Zn and S are of about +0. 85 electronic
charges, indicating nevertheless appreciable cova-
lent binding. !

In the model we choose, we consider the 4 near-
est neighbors and the central atom engaged in mo-
lecular orbitals (MO’s) formed as linear combina-
tion of metal 3d, 4p, and 4s, and ligand 3s and 3p
atomic orbitals. Simultaneously with chemical
bonding we also consider the ligand atoms, as well
as the second nearest neighboring Zn atoms with
their effective charges, as point sources of a crys-
tal electrostatic field. This crystal field is ob-
viously not considered as a perturbation of the
MO’s, but is diagonalized together with the “chemi-
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cal” part of the semiempirical Hartree-Fock-
Roothaan!® Hamiltonian.

Lacking any more detailed information, we as-
sumed that the M-S distances between the impurity
atom M and its neighbors are equal to the Zn-S dis-
tance in ZnS. In fact, the ionic radius of Mn** is
slightly greater than that of Zn**, and that of Fe™*
is smaller. But since the self-consistent effective
charge for Mn'* is greater than the effective charge
of Zn** assumed, one may estimate the effective
radii to be similar. Also, for Fe'** the self-con-
sistent effective charge is less than 2+, so this
ion will also be considerably larger than indicated
by its formal charge.

On the other hand, the good agreement reached
between calculated and observed crystal-field split-
tings 10Dq, a quantity which is very sensitive to
the M-S distance, seems to reinforce this choice.

The MO calculation was done by a semiempirical
self-consistent method.!! The atomic radial func-
tions used were those of Richardson et al. ™18 for
the metal, and those of Watson and Freeman!’ for
sulfur. The semiempirical ionization energies for
a given charge configuration were obtained following-
the method of Basch et al.'® and the off-diagonal
matrix elements were obtained from Cusachs’s!®
approximation. Matrix elements were corrected
for ligand-ligand overlap, and for the first®® and
second neighbor crystal-field effects. It is inter-
esting to notice in this connection that the inclusion
of the second neighbor crystal-field effects proved
to be essential in order to obtain correct values for
10Dgq and the g factors.

The 50 atomic spin orbitals were combined in
sets transforming as the irreducible representa-
tions of the group 7,. This decomposition yields
5T,+3A,+2E+ T, in its space part, and the problem
consists in placing 37 electrons in these orbitals.
We wish to point out the presence of T; nonbonding
(pure-ligand) orbitals, whose importance was
pointed out above. The diagonalization of the Ham~
iltonian expressed in this basis yields energies and
MO coefficients which were used to compute ef-
fective charges on the 3d, 4s, and 4p orbitals of
M. These three parameters were used as criteria
for self-consistency.® The values of self-consis-
tent charges thus obtained are listed in Table 1.

The MO coefficients and energies were then used
to calculate g factors and the electric-field-effect
coefficients R.

TABLE I. Self-consistent charge distribution.

Met 934 dus dsp quic Mot
Mn** 4,78 0.7 0.09 -0.954 1.41
Fe™ 5.16 0.77 0.14 —-0.907 1.93
cr* 4.55 0.68 0.17 —-1.04  0.60
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Electrostatic repulsion splits each configuration
into several terms. In view of the semiempirical
character of our calculation, it did not seem justi-
fied to spend a considerable effort in any detailed
calculation of these splittings. We have thus con-
sidered the excited configurations to be completely
degenerate, their average energies being given by
the corresponding one-electron excitation energies.
This method is obviously not applicable to the
ground state, however.

Thus we have obtained the energies and wave
functions of the excited quartet terms of the d° con-
figuration by diagonalization of the corresponding
Tanabe-Sugano electrostatic matrix® for 4T1, using
the calculated 10Dq values together with the follow-
ing values of the Racah parameters B and C (in
kem-!): for Mn**, B=0.6, C=3.1 (Ref. 10); for
Fe**, B=0.625, C=4B (Ref. 23); and for Cr*, B
=0.7, C=4B (Ref. 22). These values are consider-
ably smaller than the free-ion values, as is well
known.

We may mention here the values of spin-orbit
coupling parameters used in our subsequent calcu-
lations. These were (in kem™) 0. 26, 0.374, and
0. 22 for Mn, Fe, and Cr, respectively, 2% and

|
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0.40 for S. These are values interpolated between
the free-ion values for different effective charge
states.

IIl. ELECTRIC FIELD PERTURBATION

As mentioned in the Introduction, the perturba-
tion Hamiltonian due to an externally applied elec-
tric field is

Ve=eB -2, T, , (1.4)

where the sum is extended over all the electrons in
the center. The form of the spin Hamiltonian 3Cg
indicates that we shall have to perform a perturba-
tion calculation up to third order, using our molec-
ular orbitals as zero-order functions and applying
simultaneously the perturbation due to E and spin-
orbit coupling:

Zc'=JCSO+VE . (3-1)

We shall be interested in those terms of this de-
velopment which may contribute to R. If la MO )
designates the components (M=+3, +%, +1) of the
perturbed ground-state manifold ®4,, the part of
a matrix element (o MOI!%'| aM’'0O) to be retained
is

" "

<aMo{ac'|aM’o>=2Re<Moi< 2 Vs
M" M* §r

+<Mo|<

_M" M*™ jr

Here, in general, |Mj) indicates a nonperturbed
state, O indicating the ground state. We observe
that only the second part of the right-hand member
of Eq. (3. 2) has the “equivalent-even-field” form
of Eq. (1.5). In fact, the contribution of the first
part is zero in the crystal-field approach, but not
in our case. M is in each case the eigenvalue of
Sz.

Following Eq. (1. 3) it will suffice to calculate one
matrix element (3. 2), that for which M=%, M'=3.
Vi is independent of spin, and the selection rule
for M is AM=0, +£1. The spin-orbit coupling Ham-
iltonian is

=20 Dialol® S =20,7,.5,=7.5, (3.3)

where a indicates summation over all atoms, i in-
dicates the electrons, and 1; is the angular mo-
mentum of electron 7 relative to the nucleus a.

We write 7,=5,£,1%, and omit for simplicity the
summation over the electrons; we have

(a$0]5c’|a20)=20 [LRe(30| Vp|35) Gilr.S.|3k)
ik

x (3k|7.8,|20)+2 G 0l7.8,1375) Gilvelir)

l |M”J>(M”]|l

2 2%,

so)lzwo)

,Mu | VE|MMk><ka|sc,o)|M'o> . @.2)
€0—€;

X (3k|7.8,|30) ][ (eg—¢;) (o —€) ], (3.4)

where j, k represent the excited states.

The symmetry of the cluster is T,. In this group,
the ground state transforms as A,, T belongs to T},
and the pertinent part of Vy is T,. The excited
states to be considered in (3. 4) must thus be T, for
the second part, and T, or T, for the first. The
spin multiplicity in each case can be 6 or 4, We
have thus excited states of type *T,, *T,, °T,, and
87, to consider. In the ground-state configuration
&, the only sextet is the ground state A,, and only
the second part of (3.4) contributes. For contri-
butions from within d° we have thus only the three
quartets *7T, to consider. However, for the excited
configurations all the possibilities mentioned exist,
thus providing us with a very large number of ex-
cited states whose energies are furthermore un-
known to be considered, as we pointed out above.
This situation makes it preferable to abandon the
symmetry and multiplicity classification of states
altogether, even at the cost of the powerful methods
of tensor operator theory.?* We work therefore
directly in a representation in which §z and the
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configurations are considered to be diagonal.

We shall work exclusively within a strong-field
representation appropriate to our MO scheme. We
are interested in the excited states originating in
the following configurations.

(1) The ground manifold d°, denoted A¥(M=5)
whose strong-field configurations are 4¢3 2¢?,
4t 32e, 4t326°.

(2) Excited manifolds, where one electron of the
complete shells $, 1¢%, or ntf (n=1, 2, 3) is ex-
cited up to a level 4f, or 2¢. It is useless to list
all these configurations; examples are ;4¢3 2¢® and
33 4t32¢%. As usual, we neglect to write down the
complete shells. These configurations are denoted
generally A¥+t x¥-1,

Each configuration is described by a number of
Slater determinants, which can be easily derived
from the ground-state determinantal wave vector.
The manner in which this is done, and the notation
used, is described in Appendix A.

For what follows, it will be convenient to con-
sider separately the two parts of Eq. (3.4). Each
part contains V; one time and 3Cg, two times. In
the second part, Vj is the second factor; we call
this part H. In the first part, it is the first factor;
we call this D.

In each part, D or H, two excited states contri-
bute as intermediate states. We distinguish three
cases: (1) Both excited states belong to excited
manifolds; (2) both excited states belong to the
ground manifold; (3) one excited state belongs to
each, the ground and excited manifolds.

Use of the results of Appendix A allows us to
show that D,, the contribution to D from case 1
above, is zero. Similarly, one finds that H, is
zero. D, is the only contribution from a crystal-
field approach. Case 3 contributes to both D and
H.

Once the reduction to one-electron matrix ele-
ments is performed, we find the following expres-
sions for Hy:

1
210 ? {Zji[(ﬁyj-fg)(ix—ij)]d

x|z )il 7 ] 3y Gil7 %),

Hl:

(3.5)

where X denotes all complete shells, xc X, i, j€ A,

and Z is the Z components of the one-electron di-
J

V2ASB

2ALM+V2CBL

pole moment, and 7. the one-electron orbital oper-
ator defined in Eq. (3. 3).

As mentioned above, we retain the symmetry
representation for the quartet states of the ground
manifold. Each term % Tl(oz 1, 2, 3)is a linear
combination of the states {7, orlgmatmg in the con-
figurations 3 e? (4T,), the (¢T,), and Z¢° (AT),).

They are

|47 MEY=20, al| T MR, (3.6)

where k£=x, y, z. The coefficients a;* are those
obtained by diagonalization of the electrostatic en-
ergy. Each |}T Mk ) in turn is a linear combina-
tion of Slater determinants; for example,

IfT1% x) =%-:l C}k‘]_' [%])
in the notation of Appendix A. One obtains an ex-

pression for Dz in terms of monoelectronic matrix
elements of Z and 7, of the form

D,= 2¢1o Z E—Z(;% , a, B=1,2 3,
E(a)=€(iT)) - (%4, (3.7)
where the matrix elements
$o=(*A 3|78, 4T 8 ) (3.8)

and
Zys= 4T3 9| 2[2T, 3 %)

are given in Appendix B in terms of the reduced
one-electron matrix elements. The corresponding
expansions of D; and Hy are

DD DD D DlE@ -

a=1 4=1 X x€X jk

x(x|#|5) k| Z|x) Chaf €4,

. s (3.9)
Hy=1 2 2 z; 2 2 [E(@) (e, - €]

=1 i=1 $x€EX jk

15

x(x|Z|j)(k|#.|x) Chyag t,

At this point, symmetry arguments and the Wig-
ner-Eckhart theorem may be introduced to perform
the sums over the components of the different con-
figurations (sums over x, i, and j in above expres-
sions). One finds thus the final expressions

F,SS

1
H=5%0 { [e(t,) - €(4t,) P

Tlelt) - @) [ty - €@e)] [ele) - e(@ry)

8V2 ABaf - (AM~4V2 BC)ag

2(+v3)J, SL
1 1]2 +2\/_ Z) [[E(ntz) €(4ta)]z

— _1_ Fn LL" ]
2 [e(nT,) - e(4t,)][elnt,) - e(2e)]] (°

1 (BC-8V2AM)ad (V6)L,J,al

Sy
Dy+ Hy= 2\f1o E

ast Z(a) e(t,) - e(4t,)

V2 T () -€@e)  Telle)-e(dty)
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+ Z; [8\/§Fn Sn a?*’ (\/-%) G,,S,, a;
e(nt,) - €(4s,)

n#4

The letters A, S, B, etc. in these expressions
indicate the reduced matrix elements of Z and of
7. which are given in Appendix B.

The calculation of the reduced matrix elements
of the orbital operator 7 is described in Ref. 11.

In this work we used the same choice of the local
coordinate system as described in that reference.
We might notice, again, that the ligand spin-orbit
coupling terms are the only ones to allow the im-
portant influence of the #, manifold in the electric
field effect. The calculation of the reduced matrix
elements of the dipole moment is somewhat lengthly
but offers no special difficulty. A vector-coupling
technique leads to integrals which are calculated
by the same technique as overlaps and other two-
center integrals.

IV. EFFECTIVE ELECTRIC FIELD AND PIEZO-
ELECTRIC EFFECT

An electric field acting upon a molecular cluster
may have two effects: It polarizes the electrons of
the cluster—this is the effect we have calculated in
detail in Sec. III. Besides, it may act on the ions
themselves, distorting the cluster and producing
thus an additional effect.

Also, measurements are done in such a way that
an electric tension is applied to a sample placed in
the microwave cavity of an EPR spectrometer. Re-
sults of such measurements are given in terms of
the externally applied field which, due to the di-
electric polarization of the sample, is widely dif-
ferent from the electric field locally affecting the
cluster and electrons. When comparing theory and
experiment it is therefore necessary to estimate
the relation between local and external field.

The effective field may be expressed by the Lo-
renz-Lorentz equation

€+2

E=E. 3 (4.1)
where E is the microscopic field, and ¢ the de di-
electric constant of the crystal, which for ZnS is

8. This expression is valid when the field due to
the surrounding ions is zero. This condition leads
us to a consideration of ionic polarization of the
crystal. The displacement of the ions under the ef-
fect of an external electric field is given phenome-
nologically by the piezoelectric property of ZnS.
This is due to the fact® that an applied field with
components Ef,,t produces a deformation described
by the strain tensor ¢;,, and is related to El, by
the third-rank piezoelectric tensor d,;,:

€ir =E¢ dyjr Ebyt - (4.2)

[8VZL,F,+(2)G,S,] ]}

et,) - €(2e) (3.10)

If 3¢ is the electronic energy of the system, for
the linear effect of E,

%(E)=35¢(0) + d‘g‘: E,,
but
a3 _9€ 5~ 8% dep 0K v 8K
dE; 3E; 5, 8¢; BE; O9E; 5 ey
(4.3)

The total linear effect is thus decomposed into a
primary effect (electronic polarization) and a sec-
ondary effect (ionic polarization).

As we already mentioned, the tensor d;;, has the
same symmetry properties as the tensor R;;,. For
a cubic crystal of the hemihedral class 43w it has
only one independent component, whose value®® is
d=3.2%10""? MKSA. For a field applied in the
[001] direction, the corresponding deformation is
a shearing strain €;,, whose value for an applied
field of 10® V/m is 3.2x10%%. This displacement
of the atoms surrounding the paramagnetic ion pro-
duces an additional electric field which is equivalent
to that of a set of dipoles of dipole moment #=1.6
%1073 MKSA at the site of each of the nearest
neighbors, and pointing in the directions [110],
[110], [110], and [110], respectively, the first
two outward, the last two inward with respect to
the central ion.

The field of one such dipole moment at the center
of the cluster is € times the direct charge effect of
the undisplaced ion, and amounts to about 5% of the
primary (electronic) effect. The superposition of
the different dipoles representing the displacement
of the neighbors.reduces this effect still further.
We thus conclude that the secondary effect is neg-
ligible, and also that the microscopic field is cor-
rectly expressed by the Lorenz-Lorentz equation
(4.1).

V. RESULTS AND DISCUSSION

Table II gives the most important results of our
calculations in comparison with the measured values.

The general agreement is satisfactory. A de-
tailed physical analysis of the results is, however,
rather difficult, as is frequently the case for mo-
lecular-orbital calculations when a comparison with
the results of crystal-field theory is desired.

In an ionic model, the equivalent even field is de-
termined by the energy of the odd excited states,
which are the 4p states of the central ion. But as
mentioned in the Introduction, in a molecular ap-
proach, there are also odd ligand states to be con-
sidered. But the condition for their participation
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TABLE II. Comparison of calculated parameters
with experiment.
Roxpt Riper 10 Dgq
(104 cm™!/ (10%cm™!/ expt  10Dg Ag Ag
kV/mm) kV/mm) (kem™!) theor expt  theor
Mn 0.09 0.115 5.0 4.8 -0.0001 +0,0003
Fe 1.40 1.74 3.4 6.1 0.016 0.017
Cr 0.08 0.10 7.1 -0.0028 —0,0014

is, as we have seen, their spin-orbit coupling to the
central atom.

The spin-orbit matrix elements are of the same
order of magnitude for all three d° ions, the values
being somewhat larger for Fe*** than for other ions.
The introduction of ligand spin-orbit coupling means
that the spin-orbit coupling matrix elements involv-
ing the antibonding orbitals are about 10% larger
than the free-ions values, instead of being lowered
by “orbital reduction.” The spin-orbit coupling ef-
fect on the nonbonding orbitals is significant al-
though smaller than that involving the metal or-
bitals.

The energy of the strong-field ground configura-
tion 4#5 2¢% relative to the excited states depends on
the antibonding orbitals 4f, and 2¢; but in these
relatively ionic complexes it also depends on the
electrostatic shift of the ligand orbitals. The more
covalent the bonding, the more antibonding become
the one-electron levels 4/, and 2e¢, being lifted to-
wards higher energies. A comparison of the re-
sults for the three d° ions shows that Fe*** is some-
what more covalent than Mn** or Cr*. But in these
strongly ionic clusters, this effect is overpowered
by the electrostatic effects of the differing effective
charges, so that the ground state of Fe*** lies in
fact lower and, therefore, closer to the nonbonding
or weakly bonding orbitals 3%, and #;, which have
essentially ligand p7 character.

The partial results given in Table III show that
it is just these nearly nonbonding 3%, and ¢, states
which completely dominate over all others in the
determination of the magnitude of R, furnishing
more than 70% of the total of the form of the
“crossed” contribution Hg+D;. One might thus con-
sider a simplified covalent model, which should
greatly aid to the understanding of the magnetic
properties of these ions without recurring to the
complications and clumsiness of a complete MO
calculation. In such a model, two energy parame-
ters would describe the essential properties of the
ion: the customary cubic crystal-field splitting
parameters 10Dg, and a new parameter character-
izing the energy difference between the ligand or-
bitals p7 and the average of the split 34 functions
of the central ion. This new parameter should be
correlated with the deepness of the impurity ground-
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state level relative to the valence band of the host
crystal, 28

In the limit in which nonbonding interaction is
neglected, one finds the situation described by
Royce and Bloembergen, »*# which is, however,
completely unable to account for the experimental
facts, especially the large difference in both Ag
and R, on going from Cr* and Mn** to Fe™*.
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APPENDIX A: NOMENCLATURE AND CALCULATION
OF MATRIX ELEMENTS BETWEEN DETERMINANTAL
STATE FUNCTIONS

We shall use the following notation (all deter-
minantal functions are assumed to be normalized):

|y=|A¥x¥)=|tntoe, XV¥y, XV=18381c*, etc.

|(]_‘) Y=j replaces j (spin inversion) in | ). For ex-
ample,

|(@))=|tHcoe, xV).

|7)=7 is added at the last place in | ). For exam-
ple,

|%)=1entoem)=|enmeoe) .

[[%])=7% is missing in the complete shell X". For
example,

g, [3])=1tEntoe, xxy2z) if X¥=xXyy2Z.

The spin projection quantum number is kept for
state specification. We thus have

|a¥xV5y=1), [AM1x¥15), =(-1)"|7[x]),
MyN3y_ 1 7
|4 X" 3= ?'(]»,
|AM+1XN-1%>“=(_ 1)M-¢[7[x]> ,
i1 Y (B
A X" ) -y 2,16 ),

IAM+1XN-1%>”"= (- 1)M-¢ | ;(]‘.) [ 55]) .
The matrix elements of a one-electron operator

F=)f which we shall need are as follows {we write
(1AM XV 1t = (A X V15 ete. }:

TABLE III. Contribution of different levels to Rec-

(10~4cm=t/ Contribution
KV/mm)  Rineer H, D,  H3+D;  of t,+3¢,
Mn 0.116 0.007 -0.003 0.11 0.10
Fe 1.74 0.15 0.100 1.68 1.21
Cr 0.10 0.002 -0.007 0.105 0.07
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(A" xV 3| Flart x5y, = (|F{(- 0" | T [7 )= (-1 Xz | £]7),
(A¥ XV S| F|laM x5y = (=19 (| FIT[x])== (=" (x| £] ),
(A" XV 3| Flavn x5y, = (=) (| F7 (R)[])=(- 1" (%r|f|R)=0,
(A XNAS | p| AN pH 1y < (= 1)7% G E] FlR[])=6, (3] F1%),
AN XNAS | Pl At y ¥ gy, < (= 1) (G [®]| FlR (D3]
=6,y [0, 2] £ T )+ (= 1)7% 85, (il £IR) T,
(AL XIS Rl AN YN 18y = (= 1)7% (GG (2| FlR[9]) =65 (] fla)+ (= 1) 76, (G 7|R)

A XL Rl ANt P12y, = (=) (G [ Pl (D)[3])=65 (13| 7l 1x)=0,

(A XN Pl ANy = (-1 i

1 - —- =
M(M-1)]/? E), G 7| (R) (D))

=(=1)4- z 2(jtlflTx)=0,

2
[ M(m-1)]Y/
—1)M-i

fky(AM*lXN'I%IF'AMé"): [ M(M-1)]72

%3 G® [ F|(E) (D))

(__1 M-

1) M=
“Bm(m-1]7? ‘ZB [641 651 + 65 5n]<]‘|fl§>=[%_ﬂ,1(_(ﬂll__1‘ﬁm Glrlxy.

The quartet states *T, of d° are combinations of determinants of type 17[§]). For these,
(AP X Y18 I FIE]Y = (- 1) G [Z]| FI 7 [R])= (- 1) "6, (RIf %),
AP X1 B TRy = = (= D) G[x]| F| 7 [R]) == (= 1) 5, (k|| x) ,

Ll AN XV FR[1) = (- )% G () [#]| FlRlD =0 .
With these results, an expression such as that for H, [Eq. (3.8)] reads

Hi=32 2 2 (exef)™ (A" XV §|se | av1 xV13),,
¥ SEx M4

v

(A1)
(A2)
(a3)

(A4)

(A5)

(a8)

(a7

(a8)

(A9)

(A10)
(A11)

(A12)

XA XIS 18| AR YV AGY, (AN pR S 7S, | a8 X

This is the product of elements (A1), (A5), and Zg=3J @} d3+asdi+afds+asd})
(A9); (A5) forces X=Y. We write ey, €y for the
energies, to differentiate excitation to 4¢, and 2e. +_L_ F(ag db - a$ &)
One finds thus the equation (3. 5). 2v2

Similarly H, is a product of matrix elements given
by (A1), (A10), and (3.8), and Dj of (A2), (A11), =Zga - (B2)
and (3.8). The notation and values of the reduced matrix ele-

ments in Eq. (3. 10) are the following:
APPENDIX B: REDUCED MATRIX ELEMENTS AND

QUARTET FUNCTIONS Z s AND §

In terms of the quartet state coefficients ay, the
functions Z ., and 8, are given by

Sa=—alS+(af-ad)(-3V3)L, (B1)

S,,=<4tz||‘i'” nt2)=i‘/_2_ {C:ddga” C: C;§p+§1’,

x| L (ct cnv con. GCE "] ’
_J—Z. (] T T o 2
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TABLE IV. Numerical values of reduced matrix ele-
ments of the electric dipole moment and of the spin-orbit
interaction.

cr* Mn* Fe**
(a.u.)
A -1.1422 —-0.5966 -0.5128
(o] 0.3911 0.5410 1.1390
Fy - 0.2288 -0.1793 -0.1339
Fy 0.1886 0.1858 0.1895
Fy -0.1270 -0.0548 -0.0234
Fy -0.1200 -0.0644 -~ 0.0460
Fy 0.0871 0.1075 0.0597
Gy 0.2810 -0.6299 —0.5467
G, 0.0464 0.0392 0.1056
G3 -0.6851 - 0.6457 -1,0971
Gy 0.4828 0.3447 0.4485
G -0.1062 -0.0028 - 0.2356
Jy -1.1627 -0.7627 —-0.6204
Jy 0.1951 0.1453 0.3055
(kem™?)

- (V- 1))(31 0.0144 -0.0120 -0.0107
Sy -0.0777 -0.0511 -0.0291
S -0.0797 -0.0618 - 0.0459
N 0.2515 0.2617 0.3983
S5 0.0807 0.0616 0.0531
B 0.0053 0.0104 0.0151
Ly 0.0197 0.0567 0.2800
L, 0.4553 0.4817 0.6915
M -0.0664 -0.0727 -0.1343

|nty) = CH(3d)+ CH(@p) + C(3sy) + C1(3pye) + CH3Dyy),

n=1,2,8,4,5

1451
B=(4t 131 t,)=—— ¢, (c:-—ci>
73 72 )’

L,=(at, I3l me>=-f_—; [-m CimChg +it, CIm

o 2 $] t
|me>—C,; (3d)+c: (3er)’

i

M= (26"?”t1>="‘/—_2—

Gty .

In the text we have written Sy=Sand L,=L.
Dipole-moment reduced matrix elements are as
follows:

A=, 1 Z|l 48,) ,

c=(t,I Zll 2¢),

F,,=(nt2||2ﬂ4t2) , F=F,

G,= (nt, |l ZI| 2¢) ,
Jp={mell Z|l4t,) , J=d,=-14/8)G,.

The values of these matrix elements for Cr’,
Mn**, and Fe*** are given in Table IV.

IN. Bloembergen and E. B. Royce, in Proceedings of
the First International Confevence on Pavamagnetic
Resonance, Jevusalem, edited by W. Low (Academic,
New York, 1963), p. 607.

G, W. Ludwig and F. S. Ham, in Ref. 1, p. 620.

35. O. Artman and J. C. Murphy, in Ref. 1, p. 634.

‘E. B. Royce and N. Bloembergen, Phys. Rev. 131,
1912 (1963).

5A. Kiel and W. B. Mims, Phys. Rev. 153, 257 (1966).

6C. Marti, R. Parrot, and G. Roger, J. Phys. Chem.
Solids 31, 257 (1970).

"B. Lambert, C. Marti, and R, Parrot, J. Lumines-
cence 3, 21 (1970).

83, F. Nye, Propriétés Physiques des Cvistaux (Dunod
Cie, Paris, 1961).

R. Parrot, G. Tronche, and C. Marti, Compt. Rend.
269, 321 (1969).

p, Curie and J. S. Prener, in Physics and Chemistry
of II-VI Compounds, edited by M. Aven and J. S. Prener
(North-Holland, Amsterdam, 1967).

111,, D. Kandel, M. C. G. Passeggi, and T. Buch,

J. Phys. Chem. Solids 30, 321 (1969).

125, A. Misetich and T. Buch, J. Chem. Phys. 41,

2524 (1964).

3w. L. Roth, in Ref. 10.

14K Kunc, M. Balkanski, and N. Nusimovici, Phys.
Status Solidi 41, 491 (1970).

G, C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1961).

183, W. Richardson, R. R. Powell, and W, C. Nieuw-
poort, J. Chem. Phys. 38, 796 (1963).

"R, E. Watson and A. J. Freeman, Phys. Rev. 123,
521 (1961).

18, Basch, A. Viste, and H. B. Gray, Theoret.
Chim. Acta. 3, 485 (1965).

1., C. Cusachs, J. Chem. Phys. 43, 5157 (1965).

2p, D, Radke and R. F. Fenske, J. Am. Chem. Soc.
89, 2297 (1967).

2y, D. Kandel, M. C. Passeggi, and T. Buch (unpub-
lished).

223, s. Griffith, The Theory of Tvansition Metal Ions
(Cambridge U. P., Cambridge, England, 1964).

23C, K. Jgrgensen, Absorption Spectra and Chemical
Binding in Complexes (Pergamon, Oxford, 1962).

243, 8. Griffith, Irreducible Tensors for Molecular
Symmetry Groups (Prentice-Hall, London, 1962).

25K, 8. Knol, Konink. Inst. Amsterdam 35, 99 (1932).

%7, Buch (unpublished).



